likely to be found when R is a strongly electron-releasing group.^{5b}

The composition of the π -MOs of 1 (R = NH₂) is also shown in Figure 5. There are five occupied π -type orbitals, of which three are entirely associated with the heterocyclic ring. The other two orbitals have contributions from both endocyclic and exocyclic atoms. The $1b_1$ orbital is totally bonding with respect to the CNSNSN ring but also exhibits some electron density on the exocyclic $NH₂$ group. Conversely, the 3b₁ orbital is primarily a lone pair located on the exocyclic nitrogen atom with smaller contributions from the three endocyclic nitrogen atoms. To a first approximation the 3b₁ orbital can be regarded as an n_x (NH₂) orbital, and the contribution of the exocyclic nitrogen to $1b_1$ can be neglected with the result that the ring in 1 $(R = NH₂)$ can be regarded as an eight- π -electron system.

Reactions of (RzNCN)(NSCI)2 with **Halide Ion Acceptors.** The dication of **1**, $(\widetilde{RCN})(SN)_2^{2+}$, should be an electron-precise six- π -electron system.¹ The treatment of solutions of 3 ($\bar{R} = Me_2N$, $Et₂N$, *i*-Pr₂N) in carbon tetrachloride or *n*-hexane with various halide ion acceptors resulted in the immediate precipitation of yellow-orange solids, e.g.

$$
(R_2NCN)(NSCl)_2 + SbCl_5 \rightarrow [(R_2NCN)(NSCl)(NS)][SbCl_6]
$$

As indicated in Table 11, these products were identified as monocations rather than dications on the basis of elemental analyses and IR spectroscopic data. The infrared band at 1550-1570 cm⁻¹ attributed to $\nu(CN_2)$ in 3 (R = Me₂N, Et₂N, $i-Pr_2N$ ⁶ is shifted by 40–45 cm⁻¹ in the monocations, which also exhibit a strong band in the $445-455$ -cm⁻¹ region assigned to ν (S-Cl).

In contrast to the reactions of 3 with halide ion acceptors, the addition of antimony pentachloride to a solution of the eightmembered ring, $1,5-(Me₂NCN)₂(NSCl)₂,^{6a}$ in carbon tetrachloride produces the dication 1,5- $(Me_2NCN)_2(SN)_2^{2+}$ (Table II).

Summary and Conclusions

The six-membered rings $(RCS_2N_3)_n (R = Et_2N, i-Pr_2N)$ were obtained as dark purple solids characterized as adducts with norbornadiene. HFS-SCF MO calculations for $1 (R = NH₂)$ indicate that the heterocyclic ring is an eight- π -electron system and reveal a quasi-degeneracy of the HOMO *(r*)* and LUMO (π^*) levels ($\Delta \epsilon = 0.3$ eV). The first example of the RCS₂N₂⁺ ring in which R is an electron-releasing substituent was prepared
by the azide reduction of 3 (R = Et₂N). The purple color of such
derivatives $(\lambda_{\text{max}} \sim 530 \text{ nm})$ is attributed to an $n_r(\text{R}_2\text{N}) \rightarrow \pi^*$
transition. transition. The cations $(RCN)(NSCl)(NS)^+$ $(R = Me₂N, Et₂N,$ i -Pr₂N) and 1,5-(Me₂NCN)₂(SN)₂²⁺ are readily produced by treatment of the appropriate mixed thiazyl-cyanuric ring with a halide ion acceptor. The resulting salts are soluble in SO, and could serve as precursors of polymers containing an $-(R)CNNN$ backbone via electrochemical reduction (cf. preparation of (SN) , from S_5N_5 ⁺ salts).⁴⁰

Acknowledgment. We are grateful for useful discussions with Professor W. G. Laidlaw and financial support of the NSERC (Canada), CNPq, and FAPESP (Brazil). We also thank Professor R. Mews for helpful correspondence and a preprint of ref 33.

Supplementary Material Available: Listings of positional and isotropic thermal parameters for hydrogen atoms, anisotropic thermal parameters for non-hydrogen atoms, bond lengths, and bond angles associated with hydrogen atoms in i -Pr₂NCS₃N₅, and IR spectral data for salts of the $(R_2NCN)(NSCl)(NS)^+$ and $1,5-(Me_2NCN)_2(SN)_2^{2+}$ cations (4 pages). Ordering information is given **on** any current masthead page.

Contribution from the Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada **R3T 2N2**

Crystal and Molecular Structures of mer-Ph₃TeF₃ and Stereoselective Fluorine **Exchange in the** *mer* **-Ph₃TeF₃-Ph₃TeF₂⁺ System**

Anthony **S.** Secco,* Kohrshed Alam, Barry J. Blackburn,' and Alexander F. Janzen*

Received December 6, *1985*

Triphenyltellurium(VI) trifluoride, (C_6H_5) , TeF₃, was prepared by the reaction of triphenyltellurium(IV) fluoride with xenon difluoride. The crystal and molecular structures of mer-Ph₃TeF₃ were determined by X-ray diffraction techniques. mer-Ph₃TeF₃ crystals are monoclinic, $P2_1/n$, $Z = 4$, with unit cell dimensions of $a = 10.640$ (2) Å, $b = 12.144$ (2) Å, $c = 12.445$ (2) Å, and β = 100.10 (1)^o. The structure has been refined by full-matrix least-squares methods to values of *R* and R_w of 0.031 and 0.020, respectively. The molecule has Te with a slightly distorted octahedral coordination and has an approximate C_2 symmetry axis. The phenyl groups are rotated with respect to each other as a result of intramolecular steric repulsion. Te-F and Te-C bond distances lie in the ranges **1.915 (2)-1.954 (2)** and **2.110 (3)-2.129 (3) A,** respectively. Crystals contain molecules packed in a chainlike pattern. The mer structure is retained in solution, as confirmed by ¹⁹F and ¹²⁵Te NMR. Reaction of mer-Ph₃TeF₃ with PF₅ gave Ph₃TeF₂+PF₆-, which was characterized by ¹⁹F and ¹²⁵Te NMR and chemical reaction. Intermolecular fluorine exchange occurred on addition of Ph₃TeF₂⁺ to mer-Ph₃TeF^aFb₂. On the basis of both ¹⁹F and ¹²⁵Te NMR, it was possible to demonstrate that only the F^a ligand undergoes fluorine exchange, consistent with a mechanism involving five- and six-coordinate
tellurium species and the fluorine-bridged intermediate $[Ph_3TeF^b_2-F^a-TeF^b_2Ph_3]^+$, in whic position. The intermolecular (bond-breaking) process is not accompanied by an intramolecular scrambling of F^a and F^b ligands. An intermolecular exchange process involving only the PF₆- anion can be initiated by adding PF₅ to Ph₃TeF₂+PF₆-.

Introduction

The synthesis of a variety of phenyltellurium(V1) fluorides by the oxidative fluorination of $Te(I)$, $Te(II)$, and $Te(IV)$ compounds with xenon difluoride 2

 $Ph_3TeF + XeF_2 \rightarrow Ph_3TeF_3 + Xe$

~~ ~ ~~

has made these compounds available for structural and NMR studies. In this paper we describe the crystal structure of *mer*- $Ph₃TeF₃$, which is the first example of an organotellurium(VI) crystal structure investigation, as far as we know, and correlate our findings with NMR studies of fluorine exchange in mer- $Ph_3TeF_3.$

Intermolecular fluorine exchange is known to be rapid in systems such as $SiF_5-SiF_6^{2-3}$ PhPF₃H-PhPF₄H⁻⁴ and

⁽⁴⁰⁾ (a) Banister, **A.** J.; Hauptman, **Z.** V.; Kendrick, **A.** G. *J.* Chem. SOC., Chem. *Commun.* **1983, 1017. (b)** Fritz, **H.** P.; Bruchhaus, R. *Z. Na*turforsch., B: Anorg. Chem., Org. Chem. 1983, 38B, 1375.

⁽¹⁾ Present address: Department of Chemistry, University of Winnipeg, Winnipeg, Canada **R3V 2E9.**

⁽²⁾ Alam, **K.;** Janzen, **A. F.** J. Fluorine Chem. **1985, 27, 467.**

⁽³⁾ Marat, R. **K.;** Janzen, A. F. Can. J. Chem. **1977, 55, 3845.**

 $PhPF_4-PhPF_5^{-.5}$ A fluorine-bridged intermediate appears reasonable in each system, but an accompanying intramolecular ligand-exchange process scrambles the axial and equatorial ligands in trigonal-bipyramidal SiF_5 , PhPF₃H, and PhPF₄. Both intramolecular and intermolecular processes can be monitored simultaneously, as demonstrated in the $PhPF₃H-PhPF₄H⁻ study,⁴$ but in order to establish which fluorines are preferentially lost from specific sites in five- or six-coordinate compounds, a system is required in which rapid bond breaking is not accompanied by intramolecular scrambling of ligands. The mer-Ph₃TeF₃-Ph₃TeF₂ system, described in this paper, appears to meet this criterion.

Experimental Section

Xenon difluoride (PCR Research Chemicals Inc.), Ph₃TeCl (K & K Laboratories), and PF, (PCR Research Chemicals Inc.) were commercial samples. Ph₃TeF was prepared in poly(tetrafluoroethylene) equipment with use of the method of Emeleus and Heal.⁶ Attempts to prepare this compound in standard glassware invariably produced large amounts of $Ph_3Te^+BF_4^-$. Anal. Calcd for $C_{18}H_{15}F_4BTe$: C, 48.5; H, 3.4. Found: C, 47.6; H, 3.3.

Preparation of **mer-Tripbenyltellurium(VI)** Trifluoride, mer-Ph,TeF,. Solid XeF₂ (62 mg, 0.36 mmol) was added to a stirred solution of Ph₃TeF (1 16 mg, 0.30 mmol) in chloroform (3 mL). The reaction mixture was stirred for an additional 8 h at room temperature, and a pale yellow solution was formed. The solid product was precipitated by adding about 15 mL of n-hexane and recrystallized from chloroform/n-hexane. In some instances, the product was purified by sublimation at $102 \,^{\circ}\text{C}$ (10^{-3}) cmHg). Anal. Calcd for $C_{18}H_{15}F_3Te$: C, 51.2; H, 3.6. Found: C, 52.2; H, 3.7.

mer-Ph₃TeF₃ was also recovered from the reaction of $Ph₃TeCl$ (158 mg, 0.40 mmol), suspended in CHCl₃ (3 mL), with an excess of solid XeF, (128 mg, 0.75 mmol); this mixture was stirred for 48 h until the solution turned a pale yellow and the product purified as described above.

Those ¹⁹F NMR samples of mer-Ph₃TeF₃ that showed line-broadening effects were treated by adding a small amount of NaF, with gentle shaking, and filtering off the NaF.

Preparation of **Difluorotriphenyltellurium(VI)** Hexafluoropbospbate, $\text{Ph}_3\text{TeF}_2 + \text{PF}_6$. An excess of PF₅ (0.55 mmol) was condensed onto a solution of mer-Ph₃TeF₃ (0.12 mmol) in dichloromethane (2 mL) in a stoppered reaction tube. The mixture was slowly allowed to warm to room temperature. After 1 h, the excess PF_5 was removed and the solution transferred to an NMR tube, which was flame-sealed and used for NMR studies as required.

The reaction of $Ph_3TeF_2+PF_6$ - with an excess of NaF in dichloromethane for 1 day, with occasional shaking, gave mer- Ph_3TeF_3 in about 80% yield, as judged by ¹⁹F NMR. Similarly, reaction of $Ph_3TeF_2+PF_6$ with an excess of benzyltriethylammonium chloride for 20 min, with gentle shaking, gave $Ph_3TeF_2Cl^2$ in about 80% yield.

19F NMR spectra were recorded **on** a Bruker WH90 spectrometer at 84.66 MHz with the use of C_6F_6 (-162.9 ppm with respect to CFCl₃) as an internal reference. ¹²⁵Te NMR spectra were recorded on a Bruker AM300 spectrometer at 94.76 MHz using Ph_2Te (692 ppm with respect to Me,Te) as an external reference. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN.

Colorless crystals of the title compound suitable for X-ray diffraction analysis were afforded by slow evaporation from a chloroform/ n -hexane solution at room temperature. A single crystal was chosen and mounted in a general orientation on a Nicolet R3m automated diffractometer; an orientation matrix was determined from the setting angles of 25 centered reflections. From the indices and refined angles, final unit cell parameters (Table I) were obtained by a least-squares fit of 25 reflections with $24^{\circ} < 2\theta < 58^{\circ}$

Data were collected with use of Mo K α ($\lambda = 0.71073$ Å) radiation with a graphite monochromator in the incident beam: peak backgrounds and scans were counted for equal times: scan widths were given by 2.00 + $(2\theta_{K_{\alpha_2}} - 2\theta_{K_{\alpha_1}})^{\circ}$. Corrections for Lorentz and polarization effects as well as an empirical absorption correction (based on reflection intensity measurements at 36 different azimuthal angles for 10 reflections) were applied to the data with use of programs supplied in the **SHELXTL** software package. An intensity decay correction was not warranted as the maximum decay in the three standard reflections' intensities was **less** than 5% during the total exposure time of 49.4 h. A total of 77% of the unique data were considered observed with $I \ge 1.5\sigma(I)$, where $\sigma(I) = R[S + BL]$ $+ BR$ ^{1/2}, $R =$ scan rate, $S =$ total scan count, and BL, $BR =$ left and right background counts.

Table I

formula	(C_6H_3) , TeF,
fw	415.93
F(000)	808
space group	$P21/n$ (alternative setting of No. 14, $P2_1/c$)
systematic absences	$0k0 (k = 2n + 1), h0l$ $(h + l = 2n + 1)$
a, Å	10.640(2)
b. Å	12.144(2)
c. Å	12.445(2)
β , deg	100.10(1)
V, Λ^3	1583.1(4)
z	4
d_{calo} , g/cm ³	1.745
cryst size, mm	$0.13 \times 0.20 \times 0.40$
μ (Mo K α), cm ⁻¹	19.6
transmission factors	$0.544 - 0.626$
temp, ^o C	22 ± 1
scan type	ω -20
scan rate, deg/min	$8.4 - 29.3$
data collecn range, 2θ , deg	$3 - 60$
data collected	$\pm h, +k, +l$
unique data	4633
data with $F_0 \geq 3\sigma(F_0)$	3740
parameters refined	260
GOF	1.478
max shift/esd final cycle	0.40
max residual peak, e/Å	0.22

Table II. Final Positional Parameters (Fractional, $\times 10^5$ for Te and F, $\times 10^4$ for C) and Isotropic Thermal Parameters (10^3 \AA^2) with Estimated Standard Deviations in Parentheses

 ${}^aU_{\text{eq}}$ is equal to one-third the trace of the diagonalized anisotropic temperature factor matrix.

Coordinates for the Te atom were obtained from a Patterson map and refined. The remaining atoms were located in subsequent difference Fourier maps, and the structure was refined by full-matrix least-squares techniques' with anomalous dispersion correction for the Te atom? The heavy atoms were refined with anisotropic temperature factors, and isotropic thermal motion was assumed for hydrogens. An isotropic type I

(8) Cromer, D. T.; Liberman, D. *J. Chem. Phys.* **1970,** *53,* 1891.

⁽⁴⁾ Marat, R. K.; Janzen, **A.** F. *Inorg. Chem.* **1980,** *19,* 798

⁽⁵⁾ Wang, C.; Janzen, **A.** F. *Can. J. Chem. 1984, 62,* 1563.

⁽⁶⁾ Emeleus, H. J.; Heal, H. G. *J. Chem. SOC. 1946,* 1126.

⁽⁷⁾ Computation was carried out **on** the University of Manitoba Computer Services Department's Amdahl **580/5850** mainframe computer using locally written programs and **SHELXTL** (version 4) for processing and modified versions of the following programs for structure refinement and
calculations. ORFLS: Busing, W. R.; Martin, K. O.; Levy, H. A. Report
ORNL-TM-305, 1962; Oak Ridge National Laboratory, Oak Ridge, **TN. FORDAP:** Zalkin, A. **ORFFE:** Busing, W. R.; Martin, K. *0.;* Levy, H. **A.** Report ORNL-TM-306, 1964; Oak Ridge National Laboratory, Oak Ridge, TN. **ORTEP 11:** Johnson, C. **K.** Report ORNL-TM-306- 5138, 1976; Oak Ridge National Laboratory, Oak Ridge, TN.

Figure **1. ORTEP** drawing of the Ph,TeF, molecule. Atoms are represented by thermal ellipsoids at the 50% probability level.

Table 111. Bond Lengths **(A)** with Estimated Standard Deviations in Parentheses

bond	uncor	cor	bond	uncor	cor
$Te-F(1)$	1.915(2)	1.923	$Te-C(1)$	2.113(3)	2.116
$Te-F(2)$	1.916(2)	1.924	$Te-C(7)$	2.110(3)	2.114
$Te-F(3)$	1.954(2)	1.960	$Te-C(13)$	2.129(3)	2.134

Table IV. Bond Angles (deg) with Estimated Standard Deviations in Parentheses

extinction correction^{9,10} was applied with a final value of $g = 0.57$ (3) \times 10⁴. Convergence was reached at $R = 0.031$ and $R_w = 0.020$, where the complete data set $R = 0.044$ and $R_w = 0.020$. The function mini-
mized throughout refinement was $w(|F_0| - k|F_0|)^2$ with $w = 1/\sigma^2(F)$ (where $\sigma^2(F)$ is derived from the previously defined $\sigma(I)$) for the observed data and $w = 0$ for data classified as unobserved. A weighting analysis confirmed the suitability of the chosen weights by showing uniform avcommitted the suitability of the chosen weights by showing unform average values of $w([F_0] - k[F_0])^2$ over ranges of F_0 . Atomic scattering factors were from ref 11 and 12. Final atomic positional parameters are given in Table **11.** Complete tables of anisotropic thermal parameter's and structure factor data are available as supplementary material. $R = \sum_{i} |F_{o}| - k|F_{c}||/\sum |F_{o}|$ and $R_{w} = [\sum w(|F_{o}| - k|F_{d}])^{2}/\sum w|F_{o}|^{2}]^{1/2}$. For

The thermal motion¹³ has been analyzed in terms of rigid-body modes of translation, libration, and screw motion. Analysis of all non-hydrogen atoms indicated significant independent motion of the PhTe groups and the C_3TeF_3 moiety.

Discussion

Molecules of mer-Ph₃TeF₃ (Figure 1) are best described as having three phenyls and three fluorines bonded in a slightly distorted octahedral arrangement about the central Te atom. Important bond lengths and angles are given in Tables **I11** and IV, respectively. Both the Te and $C(13)$ atoms lie off the plane of F(l), F(2), and F(3) by 0.02 and 0.08 **A,** respectively, with the rest of the $C(13)$ ring rotated along the $C(13)$ -Te bond so

- (9) Coppens, P.; Hamilton, W. C. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1970,** *A26,* 71.
- (10) Becker, P. J.; Coppens, P. *Acta Crystallogr., Sect. A: Cryst. Phys., Dijffr., Theor. Gen. Crystallogr.* **1974,** *A30,* 129.
- (1 1) Cromer, D. **T.;** Mann, J. **B.** *Acta Crystallogr., Sect. A: Cryst. Phys., Dijffr., Theor. Gen. Crystallogr.* **1968,** *A24,* 321.
- (12) Stewart, R. **F.;** Davidson, E. **R.;** Simpson, W. T. *J. Chem. Phys.* **1965,** *42,* 3175.
- (13) Schomaker, V.; Trueblood, K. N. Acta Crystallogr., Sect. B: Struct. *Crystallogr. Cryst. Chem.* **1969,** *B24,* 63.

Figure 2. ORTEP drawing of the packing arrangement of Ph₃TeF₃ molecules shown with atoms with 50% probability ellipsoids.

as to give a $C(18)-C(13)-Te-F(1)$ torsion angle¹⁴ of about 10^o. The remaining two phenyl groups, which are trans to each other, are twisted in a propeller fashion with a dihedral angle of 109°, and each is roughly perpendicular to the plane of the third phenyl ring. As one looks down the $C(1) \cdots C(7)$ direction, F(3) bisects the wider opening between the two projected ring planes. The molecules can be classified as having an approximate C_2 axis along the F(3)-Te bond direction with minor deviations in the phenyl rings preventing the exhibition of true **C,** symmetry.

The relative orientations of the three phenyl rings are those that would be predicted almost solely on the basis of steric arguments. The propeller-like twist of the trans phenyl groups, tending to maximize the intramolecular contact distances of carbons 2, 6, 8, and 12 and their associated hydrogens, alleviates, somewhat, the steric repulsion from the fluorines and the bulky third phenyl group. If the rings had been coplanar with the fluorines $F(1)$ and F(2), there would have been close contacts of approximately 2.3 **A** between ortho hydrogens and the fluorines; the van der Waals radii sum for these two atoms is 2.67 Å using the values 1.47 Å for F and 1.20 **A** for **H.I5** The slight rotation of the third phenyl ring, C(13), C(14), ..., C(18), about the approximate twofold axis leaves carbons 14 and 18 in less hindered positions under the uptilted ortho carbons 8 and 6, respectively, of the other rings. The bulkiness of the phenyls is further accommodated by the bending of the trans phenyl groups and trans fluorines toward the less congested region around F(3), which results in decreases in the $C(1)-Te-C(7)$ and $F(1)-Te-F(2)$ angles from ideal linear values to 167.98 (11) and 176.18 (8)[°] (Table IV), respectively.

Bond lengths (Table 111) between Te and F in this compound have intermediate values ranging from 1.915 (2) to 1.954 (2) **A** compared with those of Te-F bonds in the (tetravalent) perfluoroethyltellurium(IV) trifluoride¹⁶ of 1.870 (7) to 2.196 (8) **A** and are significantly smaller than the Te-F distance of 2.006 (2) A in diphenyltellurium(IV) difluoride.¹⁷ Seppelt and coworkers¹⁸⁻²¹ have completed structural investigations on some pentafluorotellurium(V1) oxides, where they have found Te-F bond lengths to be **in** the range 1.80-1.86 **A. As** far as we are aware, ours is the first study to find a hexavalent tellurium to

- **^A**complete list of torsion angles and intra-phenyl-group bond lengths and angles are available as supplementary material. (14)
- Bondi, A. *J. Phys. Chem.* **1964,** *68,* 441.
- Lau, C.; Passmore, **J.;** Richardson, E. K.; Whidden, T. K.; White, P. (16) *S. Can.* J. *Chem.* **1985,** *63,* 2273.
- Berry, F. J.; Edwards, **A. J.** *J. Chem. Soc., Dalton Trans.* **1980,** 2306. Pritzkow, H.; Seppelt, K. *Inorg. Chem.* **1977,** *26,* 2685. (17)
- (18) $^{\prime}$ 19
- Lentz, D.; Pritzkow, H.; Seppelt, K. *Inorg. Chem.* **1978,** *27,* 1926. Hartl, H.; Huppmann, P.; Lentz, D.; Seppelt, K. *Inorg. Chem.* **1983,** (20)
- *22,* 2183.
- Oberhammer, H.; Seppelt, K.; Mews, R. *J.* Mol. *Srruct.* **1983,** *202,* 325.

Table V. NMR Data for the mer-Ph₃TeF^aFb₂-Ph₃TeF₂+ System^a

 $\text{``Solvent } CD_2Cl_2$; chemical shift values are in ppm and coupling constants in Hz .

fluorine bond length of greater than the previously known upper 0.10 A with use of libration-corrected values) in the Te-F bonds in the current study are probably a reflection of the decrease in electron-withdrawing power of the phenyls compared with the fluorines and oxygen in the pentafluorotellurium(VI) oxides. Te-C bond lengths in the present structure are found to be comparable to those in the tetravalent tellurium analogue $Ph_2TeF_2^{17}$ as well as those in other diphenyltellurium(IV) dihalides.²²⁻²⁴ limit of 1.86 \AA . The increase of 0.05 and 0.09 \AA (or 0.06 and

Two phenyl rings are planar within experimental error; however, the other ring, comprised of carbons 7-12, shows evidence of slight puckering. A mean plane calculated through carbons 7-1 1 shows a maximum deviation of 0.004 **(4) A** from the plane; C(12) lies off this plane by 0.024 **A.** A mean plane through all six ring atoms leaves $C(11)$ and $C(12)$ on opposite sides of the plane at distances of 0.010 (4) and 0.012 (3) **A,** respectively. The reason for the slight deformation from planarity is unclear but may be, in part, due to the overlap of this ring with its symmetrically related partner (vide infra).

Crystals of Ph_3TeF_3 contain molecules that pack in a chainlike pattern along the *c* axis (Figure 2) with the trans phenyl groups appearing as the link termini. There is little interaction along the chain between the parallel, symmetrically related phenyl rings $(x, y, z; -x, 1 - y, 2 - z)$ containing carbons 1-6; however, the parallel, offset stacking and the **3.50-A** plane separation between symmetrically related rings $(x, y, z; -x, 1 - y, 1 - z)$ containing carbons 7-12 suggests some orbital interaction, which most likely plays a key role in determining the chainlike packing arrangement. Similar phenyl-phenyl interactions linking chains of molecules have been observed in Ph_2TeCl_2 . In the present structure the rings overlap each other to the extent of approximately 30%, i.e. $C(11)$ and $C(12)$ lie about a third of the way into the other ring when both rings are projected onto one another in a plane parallel to the ring planes. The slight puckering observed in these rings (vide supra) is such that the $C(12)$ atoms are bent away from each other.

The ab_2 ¹⁹F and ¹²⁵Te NMR spectra of Ph_3TeF_3 (Table V) confirm the mer-Ph₃TeF^aF^b₂ structure in solution. There is no NMR evidence of intramolecular scrambling of **F** and **F"** ligands, and therefore the *mer* isomer is "rigid" in solution. A fac isomer, where phenyl crowding would be more severe, has not been detected by NMR.

In order to study rapid intermolecular fluorine exchange in six-coordinate phenyltellurium(V1) fluorides, it was necessary to prepare a five-coordinate Te species and this was accomplished by reaction of mer-Ph₃TeF₃ with PF₅:

mer-Ph₃TeF₃ + PF₅ \rightarrow Ph₃TeF₂+PF₆⁻

$$
mer\text{-}Ph_3\text{TeF}_3 + PF_5 \rightarrow Ph_3\text{TeF}_2 + PF_6
$$

The resulting $Ph_3TeF_2^+$ cation was identified by ¹⁹F and ¹²⁵Te NMR (Table **V).** Chemical reaction with NaF and R4NCl provided further evidence for the identity of the $Ph_3TeF_2^+$ cation: $P_1P_5 + P_5 \rightarrow P_1P_3$
 $P_2P_5 + P_4$ ation was identified

Chemical reaction with

dence for the identity of the
 $P_{h_3}TeF_2 + \frac{NaF}{r} P_{h_3}TeF_3$

$$
Ph_3TeF_2^+ \xrightarrow{NaF} Ph_3TeF_3
$$

$$
Ph_3TeF_2^+ \xrightarrow{PhCH_2(E1)_3NC1} Ph_3TeF_2Cl
$$

When known amounts of mer-Ph₃TeF^aF^b₂ and $Ph_3TeF_2+PF_6$ were mixed and the ¹⁹F and ¹²⁵Te NMR spectra were recorded,

Figure 3. (a) ¹⁹F NMR spectrum of a mixture of *mer*-Ph₃TeF^aF^b, and Ph₃TeF₂+PF₆ (2.6:1.0 molar ratio) in CD₂Cl₂ at 24 °C showing averaged F^a (-25.2 ppm) and F^b (-108 ppm) peaks with retention of F^b -Te coupling (1904 Hz). The PF₆ doublet is not shown. (b) ¹²⁵Te NMR spectrum of a mixture of mer-Ph₃TeF^aF^b₂ and $Ph_3TeF_2^+PF_6^-$ (5.0:1.0 **molar ratio) showing averaged Tc peak (808 ppm) with retention** of **Te-Fb (1985 Hz) coupling.**

the following results were obtained:

(1) The F^5-F^8 coupling is lost but the Te-F^b coupling is retained as Ph_3TeF_2 ⁺ is added to mer-Ph₃TeF^aF^b₂ (Figure 3).

(2) The average fluorine chemical shift of F^b moves toward high field as Ph_3TeF_2 ⁺ is added, but Te-F^b coupling is retained (Figure **3).**

(3) The ¹²⁵Te NMR spectrum of mer-Ph₃TeF^aF^b₂ is a doublet of triplets (Table V). On addition of $Ph_3TeF_2^+$, the coupling to Fa is lost but a **triplet,** due **to** coupling of Te to two **Fb** ligands, remains (Figure 3).

(4) The F^a peak at -2.5 ppm in mer-Ph₃Te F^aF^b ₂ (Table V) moves significantly to high field as $Ph_3TeF_2^+$ is added, and the F^a -Te coupling is lost. At a 2.6:1.0 molar ratio of mer- $Ph_3TeF^aF^b{}_2:Ph_3TeF_2^+$ the averaged F^a peak has shifted to -25.2 ppm (Figure **3).**

These results demonstrate that exchange does not lead to scrambling of F^a and F^b ligands but that intermolecular fluorine exchange in the mer-Ph₃TeF^aF^b₂-Ph₃TeF^b₂⁺ system is rapid on the NMR time scale and involves cleavage of the Te-Fa bond, but not that of the Te-F^b bonds. A mechanism involving rapid coordination changes for Te $(5 \rightleftharpoons 6)$ and F^2 $(1 \rightleftharpoons 2)$ and a fluorine-bridged intermediate in which only the **Fa** ligand occupies the bridging position is consistent with all our experimental results:

⁽²²⁾ Christofferson, G. D.; McCullough, J. D. *Acta Crprallogr.* **1958,** *I I,* **249.**

⁽²³⁾ Alcock, N.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1982, 215.
(24) Alcock, N.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1984, 869.

The stereoselective exchange of F^a ligands is opposed by statistical factors (2 F^b vs. 1 F^a) but must be favored by the significantly longer Te-Fa bond length (1.960 **A)** compared to the Te-Fb bond lengths (1.923 and 1.924 **A)** in the solid-state structure. In addition, an intermediate with F^a in the bridging position minimizes the steric interactions among the six phenyl substituents.

It was also found that "ion selective" fluorine exchange can be carried out; i.e., fluorine exchange in either the tellurium cation or phosphorus anion can be initiated without affecting intermolecular exchange in the other ion. Exchange in the mer- $Ph_3TeF_3-Ph_3TeF_2$ ⁺ system does not involve the anion PF_6^- as the ¹⁹F signal of PF_6^- remains a sharp doublet throughout the exchange process. When excess PF_5 is added to $Ph_3TeF_2+PF_6^-$, however, a single line is observed in the phosphorus-fluoride region, due to rapid fluorine exchange in the PF_5-PF_6 - system,²⁵ but the

(25) Brownstein, **S.;** Bornais, J. *Can. J. Chem.* **1968,** *46,* **225.**

tellurium species remain unaffected, as confirmed by fluorine NMR.

All intermolecular fluorine exchange in the mer-Ph₃TeF₃- $Ph₃TeF₂$ ⁺ system is stopped by adding NaF or R₄NCl because any five-coordinate Te(V1) species is converted to a six-coordinate Te(V1) species. This observation was applied to the purification of mer-Ph₃TeF₃ and other phenyltellurium(VI) fluorides: washing samples with NaF was sufficient to convert line-broadened NMR spectra to spectra characteristic of "rigid" compounds.

Acknowledgment. The financial assistance of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged. The purchase of the AM300 spectrometer was made possible by grants from the NSERC and the Manitoba Health Research Council. We also thank the University of Manitoba Earth Sciences Department for use of the X-ray diffraction facilities and the Computer Services Department for assistance.

Registry **No.** mer-Ph3TeF3, 99893-86-4; PF5, 7647-19-0; Ph3TeF2+- PF_6 , 102109-26-2; Ph_3TeF_2 ⁺, 102109-25-1; $[Ph_3TeF_2-F-TeF_2Ph_3]$ ⁺, 102109-27-3; PF₆-, 16919-18-9; Ph₃Te⁺BF₄-, 26202-89-1; Ph₃TeF, 34814-96-5; Ph₃TeCl, 31426-14-9; ¹²⁵Te, 14390-73-9; F₂, 7782-41-4.

Supplementary Material Available: Tables **of** hydrogen coordinates and isotropic thermal parameters, anisotropic thermal parameters, and bond lengths and angles involving ,phenyl carbons and hydrogens and complete lists of torsion angles (8 pages). Ordering information is given **on** any current masthead page.

Contribution from the Department of Chemistry and Program **in** Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4630, and Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630, Japan

Synthesis and Characterization of the Three Geometrical Isomers of Difluoro(1,3-propanediamine-N,N'-diacetato)chromate(111). Crystal Structure of *trans* **-Li**[CrF₂(1,3-pdda) $\frac{1}{2}$ H₂O

Robert J. Bianchini,^{1a} Urs Geiser,^{1a} Helen Place,^{1a} Sumio Kaizaki,^{1b} Yasuyo Morita,^{1b} and J. Ivan Legg*la

Received June *5, 1985*

The synthesis and isolation of chromium(III) complexes of the linear tetradentate ligand 1,3-propanediamine-N,N'-diacetate (1,3-pdda) with monodentate (F) and bidentate (malonate, oxalate) ligands are reported. The three geometrical isomers (sym-cis, unsym-cis, trans) of $[CrF_2(1,3-pdda)]$ ⁻ and the unsym-cis isomer of the corresponding malonate and oxalate complexes were isolated. Characterization was accomplished with UV/visible spectroscopy, 2H NMR spectroscopy, and single-crystal X-ray diffraction analysis. The complex trans-Li $[CrF_2(1,3-pdda)]$. $2H_2O$ (LiCrF₂O₄N₂C₇H₁₂. $2H_2O$) crystallizes in the space group *Pnma* of the orthorhombic crystal system with $a = 12.137$ (6) \overline{A} , $b = 15.450$ (6) \overline{A} , $c = 7.050$ (3) \overline{A} , $\alpha = \beta = \gamma = 90^\circ$, and $Z = 4$. A residual of **0.053** was obtained for 1985 independent "observed" reflections collected at ambient temperature with use of a full-matrix least-squares refinement procedure. The complex has distorted-octahedral geometry around the chromium, with two fluorines trans to one another and a F-Cr-F angle of 176.67 (9)^o. The Cr-F distances are 1.878 (2) and 1.901 (2) Å. The independent Cr-O and Cr-N distances are 1.992 (2) and 2.060 **(2) A,** respectively. The stability of tram-[CrF2(1,3-pdda)]- was established by 2H NMR and is attributed in part to the chair conformation of the ligand diamine hydrocarbon "backbone". A new synthetic scheme for incorporating deuterons into polyamino poly(carboxylic acid) ligands is also reported.

Introduction

The study of geometrical isomerism in substitution-inert transition-metal complexes has been an area of intense activity and has provided much of the basic structural information for the study of transition-metal chemistry in general. Most of the classical stereochemical work has been done with more easily made and characterized Co(II1) complexes. Investigation of isomerism

(1) (a) Washington State University. **(b)** Nara Women's University.

for Cr(II1) complexes has been hampered by the lack of an NMR technique due to the extreme broadening of most nuclei brought about by the paramagnetic Cr(II1) center. Recently, deuteron nuclear magnetic resonance (²H NMR) spectroscopy was shown to be a powerful technique for studying chromium(II1) complexes in solution.²⁻⁵ In order to determine whether ²H NMR could

-
-

⁽²⁾ Wheeler, W. D.; Kaizaki, S.; Legg, J. I. *Inorg. Chem.* 1982, 21, 3248.
(3) Green, C. A.; Bianchini, R. J.; Legg, J. I. *Inorg. Chem.* 1984, 23, 2713.
(4) Wheeler, W. D.; Legg, J. I. *Inorg. Chem.* 1984, 23, 3798.